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This paper describes an experimental study of the flow associated with the intrusion 
of an air cavity into a long horizontal duct as water was allowed to drain from one end. 
Flows of this nature were discussed by Benjamin (1968), who showed that throttling 
of the flow of water from the end of the duct would cause both the celerity and the 
depth of the cavity to reduce. However, the experiments described in this paper 
revealed that the celerity of the cavity was not reduced from its unthrottled value 
until the water depth beneath the cavity was 0.78 of the duct depth. For values of 
this depth ratio between 0.5 and 0.78, the flow as a whole was unsteady. It is shown 
that Benjamin’s model can be modified to allow for the unsteady nature of the flow. 
Benjamin’s original model was found to describe accurately the form and behaviour 
of the cavity in the case of unthrottled flow, when the flow was steady, and also when 
the depth beneath the cavity exceeded 0.78 of the duct height, when the flow was 
again steady. Surface-tension effects were found to reduce the celerity of the cavity 
and to modify its shape as described by Gardner & Crow (1970). 

1. Introduction 
This paper describes an experimental study of the motion of an air cavity into a 

long horizontal duct of rectangular cross-section. The motion is initiated by filling 
the duct completely with water and then partially opening one end of the duct, 
allowing water to flow out of the duct and air to enter. 

Benjamin (1968) suggested such a study might be performed to test the validity of 
a model he proposed for the motion of gravity currents confined between horizontal 
boundaries. The model was idealized in that the fluids were assumed to be immiscible, 
and that effects due to surface tension and viscosity were assumed negligible com- 
pared with those relating to fluid inertia and gravity. Benjamin examined the balance 
of pressure forces and fluid momentum associated with a control volume which moved 
with the front of the air cavity, and showed that the velocity of the cavity was in- 
fluenced by the proximity of the lower boundary. It was shown that before steady 
parallel flow could be achieved downstream of the cavity some energy dissipation was 
required, except for one flow state when the air-water interface was located midway 
between the upper and lower boundaries. In  this case uniform flow could be achieved 
beneath the cavity without any energy being dissipated. 

Benjamin used conformal mapping to obt,ain an approximate expression for the 
shape of the cavity and also examined the stability of the flow with regard to inter- 
facial disturbances. 

The experiments by Zukoski (1966) on the motion of long bubbles in closed tubes 
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provided verification for Benjamin’s analysis of the energy-conserving flow in ducts 
of circular cross-section. 

Later work by Gardner & Crow (1970) investigated the effects of surface tension on 
the energy-conserving flow and showed that surface tension produced significant 
departures from the cavity shape and celerity calculated by Benjamin. Surface- 
tension effects were appreciable at surprisingly large scales and, in ducts 100 mm deep, 
the velocity of the cavity front was some 10 % less than the value predicted by the 
idealized model, although it will be shown that other factors contributed to this 
disparity . 

Both Zukoski (1966) and Gardner & Crow (1970) found that viscosity had no effect 
on the initial velocity of the cavity for flows with Reynolds numbers in excess of about 
200. The Reynolds number was based on the depth of the duct and the celerity of the 
cavity. However, in very long ducts, viscous effects must ultimately exert a controlling 
influence on the flow. 

In  the experiments described here, both the energy-conserving flow and the non- 
conserving flows were studied. This was achieved by throttling the discharge from 
the duct over a weir located across the open end of the duct. Thus the ratio of the 
cavity depth to the height of the duct could be controlled independently. Gardner & 
Crow only examined unthrottled flows, in which case ratio of cavity depth to the 
height of the duct was found to approach the value of 4 in the larger-scale experiments, 
as predicted by Benjamin’s theory. 

Once the flow was throttled, the flow as a whole became unsteady, with the head 
of the cavity progressing forward at the depth and speed that it would have if the 
duct were open-ended. Behind the head followed a slower moving bore, which defined 
the limit of upstream influence of the control weir. As the height of the weir was 
increased, the flow depth on the downstream side of the bore and the celerity of the 
bore also increased. Finally, when the downstream depth was equal to 0.78 of the 
height of the duct, the bore moved with the same speed as the cavity, and the flow 
became steady. 

Benjamin in his original work assumed that steady flow could be achieved at  all 
degrees of throttling. The experiments described in this paper show that this is not 
the case and that the flow as a whole is unsteady when the flow depth far downstream 
is between 4 and 0.78 of the height of the duct. 

A detailed description of an unsteady air-cavity experiment is given in Q 2. In  Q 3 
Benjamin’s model is reworked with allowance made for the unsteady nature of the 
flow. The experiments and experimental techniques are described in $4, and the 
effects of surface tension and viscosity on the motion of air cavities are discussed in $ 5.  

2. Description of the unsteady flow 
Figure 1 shows sequential photographs from an air-cavity experiment in which 

the flow of water from the duct was impeded by a sharp-crested weir located at  the 
open end of the duct. The height of the weir in this experiment was one-third of the 
height of the duct. The water was dyed red, and in the photographs shows up dark 
beneath the white air cavity above. The upper and lower boundaries of the duct are 
clearly visible and V-shaped distance markers are located at  intervals of 20 cm 
along the upper boundary. 
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FIQ~RE 1. Motion of an air cavity in a horizontal duct. Photographs show the cavity at times 
t ( g / H ) &  = 0.24, 0.39 and 0.65 in the 100 mm high duct. Values of the experimental parameters 
are F = 0.46, Fb = 0.32, H, = 0.48, H ,  = 0.62 and Z = 3 x 

The flow can be divided into three distinct regions. At the very front of the air 
cavity, the elevation of the air-water interface is seen tovaryrapidly, but, at a distance 
of the order of the duct height behind the leading edge, the interface attains a uniform 
level very nearly at  the mid-height of the duct. Here the streamlines are straight and 
parallel. In the absence of any obstruction at the open end of the duct, this region of 
uniform flow with the air-water interface at mid-height extended the full length of 
the cavity. However, the presence of the weir in this experiment caused a bore to 
propagate upstream behind the head. This bore, which was undular in form, is clearly 
visible in figure 1 and forms the second flow region. The mean depth can be seen to 
increase across the bore. Note that there is no evidence of turbulence or energy 
dissipation in the region ahead of the bore. Finally, a third region can be identified 
behind the bore, where the free surface is again nearly horizontal, there are no waves, 
and the flow is uniform. 

Having identified the basic features of the flow, it is of interest to follow their 
development in time as the air cavity progresses along the duct. Examination of the 
three photographs in figure 1 reveals no variation in the shape of the head with time. 
However, the frontal region lengthened with time, indicating that the celerity of the 
cavity front exceeded that of the bore. The undular bore also underwent change as it 
travelled along the duct. The wave train following the bore front continued to lengthen, 
thereby providing the mechanism by which energy could be radiated away from the 
bore. This process is a consequence of the difference in phase speed and group velocity 
of waves within the train. 

Raising the weir caused the depth in the region downstream of the bore to increase, 
thereby strengthening the bore. This was evidenced by an increase in the amplitudes 
of the undulations until the leading wave broke and the bore front became turbulent. 
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FIGURE 2. Photograph of the energy-conserving flow in the 100 mm high duct. Values of the 
experimental parameters are F = 0.468, HI = 0.48 and I: = 3 x 

FIGURE 3. Photograph of a flow in which the upstream influence of the control extends to  the 
very front of the cavity. Values of the experimental parameters are F = 0.375, H ,  = 0.87 
and X = 3 x  

Energy that was previously radiated away from the bore by the waves was now 
dissipated by turbulence within the bore. Once breaking was initiated, the wave 
amplitudes were much diminished. Increasing the height of the weir also caused the 
celerity of the bore to increase. 

Thus three possible flow regimes were identified and their existence was found to 
depend on the relative velocities of the cavity front and the bore. 

(i) The steady-flow regime in which energy was conserved. This is shown in figure 2, 
and exists in regions beyond the influence of any downstream control. 

(ii) The unsteady regime shown in figure 1, in which an energy-conserving region 
of continuously increasing length was followed by a bore and developing train of 
waves . 

(iii) The steady dissipative regime which exists when the water depth beneath the 
cavity exceeds 0.78 of the duct height. This regime is shown in figure 3. 

3. Analysis 
Although the flow associated with the intrusion of an air cavity into a long duct 

may be unsteady, selection of suitable frames of reference enables the frontal region, 
and the bore region to be viewed as steady flows. These two frames of reference, one 
moving with the cavity front and the other moving with the bore, can be coupled by 
considering the continuity of the flow beneath the cavity. This enables an analysis to 
be made of the entire flow field. 
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As no energy dissipation is evident upstream of the bore, it  is reasonable to assume 
that energy is conserved in that region. Following Benjamin (1968) and travelling 
with the front of the air cavity, conservation equations can be written for the fluxes 
of mass, flow force and energy. With reference to figure 4 these equations are given by 

pcho = P U I h l ,  (1)  

(2) 

(3) 

Pc2ho + *PPgh: +PO ho = Put h, + Qpgh: +P, ho, 

Qpc3h0 + pgch: + chop0 = &:hl+ pgulh? + ~ 1 h l p 1 ,  

where the subscripts 0 and 1 refer to regions of uniform flow upstream and down- 
stream of the front, and h is the depth of flow, u is the mean velocity relative to axes 
moving with the front of the cavity, p is the density of the lower fluid, and p is the 
pressure at the upper boundary. The density of the air is assumed negligible compared 
with that of the fluid beneath it. 

The pressures po andp, can be related by applying the Bernoulli equation along the 
dividing streamline. Ifps denotes the pressure at the stagnation point, which, as will 
be shown in $ 5 ,  must be located some distance h, below the upper boundary, then 

Po + 4pc2 = p s  - pghs. (4) 

Surface tension will cause the pressure inside the air cavity to exceed the pressure on 
the liquid side of the interface so that 

0- 
P,= PS+Y, 

where u is the surface tension and r is the radius of curvature of the air-water interface 
at  the stagnation point. Combining (4) and (5) gives 

(6) 
U 

~1 = + $pc2 + pghs +; . 

The pressure differential p ,  - po may now be eliminated from (2) and (3) and, if these 
equations are normalized by dividing respectively by ipghi and +pgch,2, the following 
equations result: 

( 7 )  
2F2 c, 
Hl 2R 

F2+1 = -+H;+-++HS, 

F= c, 
H ;  2R 

2=-+2H1+-+22Hs, 



114 D. L.  Wilkinson 

Here F = c(gh,)-$ is the cavity Froude number, H I  = h,/h, is the depth ratio of the 
frontal region, R = r/h, is the normalized radius of curvature at the stagnation point, 
I; = 4cr/pghi is a surface-tension parameter as defined by Gardner & Crow (1970), and 
H ,  = h,/h, is the normalized stagnation-point displacement. 

Equations (7)  and (8) differ from those derived by Gardner & Crow ( 1  970) and from 
Benja,min’s original work in that they allow for displacement of the stagnation point 
away from the upper boundary. Also, the forces due to surface tension a t  the upper and 
lower air-water interfaces have been omitted from (7)  and (8), and would involve an 
additional term of order I; on the right-hand side of each of these equations. I n  deep 
ducts, these terms are typically some orders of magnitude less than the included 
surface-tension effects, which are of order CIR and were introduced through the effect 
of surface tension on the stagnation pressure in (5). 

Equations (7) and (8) can readily be solved to give the steady energy-conserving 
flow 

(9) 
I; 

l -  4R F = H - &---HB. 

Thus the interface in ideal fluid flow is located centrally in the duct. I n  real fluids, the 
air cavity extends below the duct centre line, and the celerity of the cavity is reduced. 
Real-fluid effects will not be considered further in this section, which is aimed a t  
quantitative clarification of the dominant forcing due to gravity and the fluid inertia. 
The cavity in an ideal-fluid experiment would intrude into the duct with celerity 
c = &(gh,)*, and since the depths of the cavity and the flow beneath it are the same 
the velocity of this flow must be equal and opposite to that of the cavity. 

Consider now the upstream influence of a weir located a t  the open end of the duct 
if it  is raised by some small amount. Because the flow approaching the weir is sub- 
critical, a long wave is generated and propagates away from the weir with celerity 
cw = (gh,)* relative to the approaching flow. A stationary observer would see this wave 
slowed to a lesser celerity cb, given by 

c:, = C ~ - C  = (48- 4) (gh,)* = 0*207(gh0)*. (10) 

The celerity of the front in a stationary frame is equal to &(gho)*, which exceeds the 
wave celerity, and therefore the front remains unaware of the existence of the weir. 
Evidence of this process was seen in figure 1, where the distance between the cavity 
front and the bore increased with time. 

As the height of the weir is increased further, the long wave steepens to form an 
undular bore, and eventually a breaking bore. Increasing the height of the weir also 
increases the celerity of the bore, so that ultimately it can be made to move with the 
same speed as the cavity front. At this stage there is a dramatic change in the form of 
the cavity to that shown in figure 3. 

An observer travelling with the bore sees the flow in his immediate vicinity as 
steady. The nature of the bore was determined by the ratio of depths to either side 
of it, that is the ratio h,/hl.  When h,/hl was between unity and approximately 1.35, 
the bore was undular, and was followed by a growing train of waves. For values of 
h,/h, greater than 1.35, the bore was found to be of the dissipative type and was 
characterized by a breaking turbulent front, downstream of which the flow was 
relatively uniform. 
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Following Whitham (1 962), conservation equations for mass, flow force and energy 
at sections 1 and 2 on either side of the bore are given by 

pu?, = PULh,, (11) 

pu'qh+ipgh2, = puk2h,++pgh~+ [E(2n-+)] ,  (12) 

(13) 

Here E = +pgaa is the mean energy of the waves per unit surface area (a is the wave 
amplitude), and n is the ratio of the group velocity cg to  the wave celerity cw. The 
primes denote velocities measured from a frame of reference that moves with the 
bore. The bracketed term in (12) is the radiation stress and in (13) the bracketed term 
is the work done by the radiation stress on the mean flow plus the radiation of wave 
energy away from the bore. Since the waves are stationary relative to the bore, it 
follows that their celerity must be equal in magnitude and opposite in sign to  that of 
the flow and therefore 

+ph,u~3+pgh2,u; = + p ~ ~ ~ h , + p g h 3 4 +  [uLE(2n- i )+E(ui -  cg)] .  

1 ~ 6 1  = c w =  (: -tanhkh, )" , (14) 

where k is the wavenumber. 
If the bore is of the undular type then there are four unknowns, uL, h,, a and k 

(both n and cg are functions of u; and kh,) and ( 1  1)-( 14) are required for a solution. 
If the bore is of the dissipative type, there are only two unknowns, uh and h,, and 
(1 1 )  and (12) are sufficient after omission of the bracketed wave term in (12). Solution 
of these equations leads to  the familiar relationship for a hydraulic jump 

Upstream of the bore h, = ih,, therefore 

where H, = h,/h,. 
An explicit relationship for the same variables cannot be obtained for an undular 

bore; however, calculations by Wilkinson & Banner (1977) showed t,hat, for a given 
depth ratio h,/h,, the parameter uf2/gh for an undular bore differed from that given by 
(15) by an amount of t,he order of (ak)2. Their experiments showed that the maximum 
value of (ak) ,  was 0.04, and this was achieved at  incipient breaking when h,/h, was 
equal to 1-35. Thus (ak)2 is sufficiently small for (15) to  be a reasonable approximation 
for both undular and breaking bores. 

Having obtained relationships between the variables in two frames of reference, 
one moving with the front of the cavity and the other moving with the bore, it remains 
to  close the system by coupling the two frames. Relative to  a stationary observer, 
continuity requires that the velocity at section 1 in figure 4 beneat,h an energy- 
conserving cavity be c. If the bore relative to  a stationary observer moves with 
velocity G b  then relative to the bore, the approaching flow has a velocity 

U; = C - C b  = +(gh,)*-Cb. (17)  

Elimination of u; between (15) and (16) enables the bore Froude number 
Fb = cb(gh,)-* to  be expressed as a function of the independent variable H,, whose 
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Sharp-creasted 
control weir 

FIUURE 5. Schematic diagram of the experimental facility. 

value can be set by suitable manipulation of the weir. Thus the celerity of the bore is 
governed by the relationship 

yb = 4 - (+H,(2H, + I))+. (18) 

It can be shown from (18) that the bore moves slower than the front if H ,  < 0.781. 
Thus the steady flow shown in figure 3 can only occur when 0-781 < H ,  < 1. In  this 
range Benjamin’s original analysis holds and the celerity of the front is determined by 
the conservation relationship (7) for flow force. For values of H ,  between 4 and 0.781 
the flow as a whole is unsteady, with the front behaving as an energy-conserving flow 
followed by a slower-moving bore whose celerity is determined by the downstream 
control through ( 18). 

4. Experiments 
The experiments were directed towards clarifying the various flow regimes and 

were performed in a Perspex-walled duct, 3 m in length and having an internal 
width of 100 mm and a height of 100 mm. One end of the duct was sealed, and at 
the other end a sliding gate was installed, which when in place sealed the duct com- 
pletely. Throttling was provided by a sharp-crested weir located adjacent to, and 
immediately downstream from, the sliding gate. Figure 5 shows the layout of the 
experimental facility. 

The depth ratio H ,  could be adjusted to any desired value between 0.5, when the 
sharp-edged weir was flush with the bottom of the duct, thus generating no upstream 
influence, and 1, when the weir extended the full height of the duct. 

A second series of experiments, aimed primarily at clarifying the effect of surface 
tension on the motion of the front, was performed in a deeper duct, also 3 m in length 
but with cross-sectional dimensions of 200 by 400mm. In one group of tests the 
200 mm side was uppermost while in another group the 400 mm side was uppermost. 

The duct was inclined slightly while it was filled with water so that the air could 
escape through a small vent above the weir, This vent was closed and the duct, 
completely filled with water, was returned to the horizontal position prior to re- 
moving the sealing gate and thus starting the experiment. The discharge from the 
duct was controlled by the crest level of the sharp-crested weir, 

The advance of the air cavity along the duct was photographed a t  0.5 s intervals 
using a 35mm Nikon camera with motor drive. The exposure time was &s. A 
rotating disc timer adjacent to the duct enabled the time at  which each photograph 
was taken to be determined to better than & s. Markers at  20 cm intervals along 
the roof of the duct (see figure 1 )  enabled the velocity of the cavity to be determined 
at ten or more sections along the tank to an accuracy of better than & 2 %. 
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equation (9) 

equation (1  8) 
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FIGURE 6. Cavity Froude number (0 )  and normalized celerity of the bore ( x ) as functions of 

the downstream depth ratio. X = 3 x for all data shown. 

In  accordance with Daly & Pracht (1968), who investigated numerically the 
behaviour of gravity-current surges produced by the removal of a barrier separating 
fluids of slightly differing densities, the celerity of the air cavity was found to achieve 
a constant value within a distance comparable to the height of the duct. No 
systematic variation of the cavity celerity was detectable beyond this point. 

Experimental values of the normalized celerities of the cavity and the bore (3' and 
Fb respectively) are plotted against the far-downstream depth H ,  in figure 6 .  The 
continuous curve shows the relationship as originally calculated by Benjamin for the 
motion of the cavity front, and corresponds to ( 7 )  with H ,  = 0 and C / R  = 0. The 
dashed curves between 0.5 < H ,  < 0.75 correspond to (9) and (18) for the cavity, 
and the bore respectively, after appropriate values have been substituted for H ,  and 
C/R as described in 3 5 .  In this range of H,, the motion of the cavity front is unaffected 
by throttling of the discharge by the weir. 

For 0.75 < H ,  < 0.96 the flow is steady and the weir exerts a controlling influence 
on the motion of the cavity. The dashed curve is a plot of the governing relationship 
( 7 )  for steady flow, after insertion of appropriate values of H ,  and C/R. No region of 
uniform flow corresponding to that denoted by H I  in figure 4 exists when the flow is 
steady, and H ,  in (7) should be replaced by H,. 

5. The effects of surface tension and viscosity 
Gardner & Crow (1970) clearly demonstrated that surface tension reduced the 

celerity of air cavities intruding int.0 horizontal ducts. They also found that the 
shape of the cavity was affected by surface tension. 
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Surface tension causes the pressure in the cavity interior to exceed the stagnation 
pressure originally proposed by Benjamin (1968). The end result is a reduction in the 
celerity of the cavity, as shown in (9). The value of the cavity Froude number is 
dependent on the radius-of-curvature parameter R and the normalized displacement 
H ,  of the stagnation point. However, neither of these parameters can be controlled 
independently, and further relationships must be sought in order to determine their 
magnitudes. 

Gardner & Crow assumed the stagnation point to be located on the upper boundary, 
H ,  = 0. They argued, that because velocities in the vicinity of the stagnation point 
are very small, the radius of curvature there should be independent of the cavity 
celerity and therefore equal to the value for a blocked condition, where surface tension 
exactly balances the hydrostatic forces and the cavity is stationary in the duct. While 
their experimental data indirectly support this assumption in small ducts (C > 
the flow in the vicinity of the leading edge of the cavity is more complex than was 
proposed in their model. 

As the cavity progresses along the duct, the no-slip condition at  the rigid boun- 
daries, combined with surface tension, causes a film ofwater to remain attached to the 
roof. Therefore, relative to the cavity, the flow divides, with the bulk of the flow passing 
beneath the cavity, but with a small fraction flowing above the cavity to form the film. 
It follows that the dividing streamline, and therefore the stagnation point, must be 
located below the roof of the duct. Furthermore, because the velocity in the vicinity 
of the stagnation point is low, while the velocities above the dividing streamline far 
upstream and far downstream of the stagnation point are equal to c, continuity dic- 
tates that the depression of the stagnation point will be many times the film thickness. 

When an air cavity intrudes into a duct containing water that is initially a t  rest, 
the only motions are those that are induced by the cavity itself. The induced motions 
decrease rapidly with distance ahead of the cavity and it can be shown that the 
boundary-layer thickness at  the roof of the duct is appreciably less than the dista,nce 
between the stagnation point and the roof. 

Hence the general features of the flow in the immediate vicinity of the stagnation 
point (and only in this region) can be obtained from an inviscid model consisting of a 
source located at  (0, 1),  its mirror image at  (0 ,  - I )  and a uniform flow with velocity V 
given by @ = Vy. The resulting stream function is 

Y + 1  @ = ~y + arctan ES + arctan -. 
X X 

The flow pattern described by this stream function depends on the value assigned 
to 8. When V < 1 a single half-body results, exhibiting symmetry about the x-axis; 
however, this flow is not relevant to the present study. When V > 1 two half-bodies 
result, placed symmetrically about the x-axis; the flow in the lower domain is shown 
in figure 7. The x-axis represents the roof of the duct, and it can be seen that the flow 
divides at  a point above the nose of the cavity. One stream passes above the cavity to 
form the film attached to the roof, while the bulk of the flow passes beneath the 
cavity. Increasing the value of V has the effect of reducing the ratio of the nose height 
to the depth of the flow above the cavity, that is the ratio of nose height to the film 
thickness. The value of V selected as being appropriate to the model was that which 
gave the same ratio of nose height to film thickness as was observed in experiments. 
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FIGURE 7. The form of the dividing streamline in the potential-flow model. Matching the ratio 
of film thickness to leading-edge displacement from the boundary set $,, = 0.0333 for I: = 
3 x Observed cavity profiles are shown for F = 0.46 ( x ) and F = 0.33 (a). 

The thickness of the film remaining on the roof of the duct was found by wiping a 
measured area of the roof with a sponge immediately after the passage of the air cavity 
and then weighing the sponge to determine its increased mass. The film thickness was 
found to be 0.1 ~f: 0.04 mm for an energy-conserving flow in the 100 mm deep duct. 
The distance between the nose of the cavity and the boundary was measured directly 
from photographic enlargements and the mean value was found to be 3.3 & 0.5 mm. 
The ratio of these two dimensions gave V = 1.11 and the $-value of the dividing 
streamline $r0 = 0-0333. 

Figure 7 gives a comparison between the observed profile of the cavity and that 
described by the stream function (19); and agreement, between the two in the frontal 
region is surprisingly close. However, the validity of an inviscid model to predict flow 
patterns, in particular the location of the stagnation point, so close to a solid boundary, 
must be examined. 

The potential model gives the velocity distribution along the upper boundary as 

The boundary itself, viewed from the same frame of reference, moves with velocity 
V ;  and because x < 0 in the area of interest the boundary moves faster than the 
adjacent fluid, with the velocity difference across the boundary layer u8 given by 

X 
14 = x2+19 

which asymptotes to 
1 14 = 

with increasing distance from the cavity. 
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Thus, far from the cavity the boundary-layer growth would be similar to that 
produced by a sink a t  x = 0 on a plane stationary boundary coinciding with the 
x-axis. Such a flow has been investigated by Batchelor (19671, who showed that the 
depth 6 of the vorticity-containing region was given by 

where for this problem r = 1x1 and ,a is the fluid viscosity. Thus, as one approaches 
the cavity the increasing velocity difference between the free stream and the boundary 
produces a convective thinning of the boundary layer which dominates the diffusion 
of vorticity by viscosity. Substitution of the appropriate values into (23) at a dis- 
tance of one nose height from the front of the cavity (3.3 mm in the 100 mm duct) 
gives S = 0-1 mm. Thus the boundary-layer thickness is much less than the height of 
the nose and the use of an inviscid model to predict the geometry of the dividing 
streamline is justified. 

Having established the location of the stagnation point the validity of equation (9) 
for the cavity Froude number of the energy-conserving flow can be examined. This 
flow in the 100 mm duct gave F = 0.46 t. 0.007, Z = 3 x R = 0.033 k 0.005 and 
H ,  = 0.015 & 0.005. Substitution of these values into (9) yields 

c 
4R 

F + - +Ha = 0.464 -+ 0.023 + 0.015 

= 0.502 4 0.017, 

in agreement with the value of 4 predicted by the theory. It will be noted that the 
effect of stagnation-point displacement is comparable with that due to surface 
tension. 

Experiments conducted with lower values of F and constant C, and other experi- 
ments in which Z was varied while F remained constant, revealed that the shape and 
actual dimensions of the cavity in the immediate vicinity of the stagnation point 
remained unchanged. This observation is in accord with the Gardner & Crow assump- 
tion, and implies that gravity and surface tension are the dominating influences in 
that area. It therefore follows that the dimensional groups g/pgr2 and hs/r are con- 
stants. Experimental data gave the magnitude of these parameters as 0.67 k 0.25 and 
0.45 respectively. The large relative error in ‘+/pgr2 resulted from difficulties in 
estimating r from the photographs, and could only be accomplished with a consistency 
of 

When the above values for ‘+/pqr2 and hs/r  are substituted into (9) for the energy- 
conserving cavity the following relationship results : 

20 yo. No systematic variation of vlpqr2 or hs/r with F or C was noted. 

F = 9- 0.68Zi. (24) 

Equation (24) is plotted in figure 8, and is in satisfactory agreement with the data 
from Gardner & Crow’s experiments as well as the present experiments. It should be 
noted that within the range lo-* c C < 10-1 (24) and the equivalent relationship 
obtained by Gardner & Crow (with their empirical constant k = 0.8) agree to better 
than 5 %. The only difference between the two calculations is that the present analysis 
makes allowance for the departure of the stagnation point from the upper boundary. 

Experiments conducted in deeper ducts with correspondingly reduced values of C 
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FIGURE 8. Cavity Froude number in energy-conserving flows as a function of the surface tension 

parameter. x , present experiments; 0 ,  Gardner & Crow (1970); -, equation (24). 

FIGURE 9. Profiles of the energy-conserving cavities for different values of the surface tension 
parameter. The recumbent leading edges of the cavities have been omitted for clarity. Benja- 
min’s (1968) theoretical profile: - , I; = 0 ;  --, 2 x  10-4. _ _ _ _  - 8 x 10-4; _.-.- 
3 x 10-3. 

confirmed that the surface tension became increasingly less important, and the shape 
of the cavity approached that of the idealized model originally proposed by Benjamin. 
This trend is plainly shown in figure 9. 

The steady flows are governed by the continuity and flow-force relationships which 
combined to yield (7 ) )  where H ,  now becomes H,. Substitutions can be made for R 
and H ,  using the previously determined values of cr/pgr2 and h8/r .  The resulting form 
of (7 )  is shown as the dashed curve in figure 6 between 0.75 < H ,  c 0.96, and compares 
favourably with the experimental data. It will be noted that there is a substantial 
departure from Benjamin’s ideal-fluid model (shown by the continuous curve) as H ,  
approaches unity. 

It could be argued that the reduction of F with increasing values of the surface- 
tension parameter Z is due to an accompanying reduction in the Reynolds number. 
Zukoski (1966) performed an extensive series of experiments in which he studied the 
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effect of surface tension and viscosity on the motion of long air bubbles in tubes. He 
found that, provided the Reynolds number defined as Re = p(gh$/p is greater than 
200, viscosity had no discernible effect on the celerity of the cavity. The Reynolds 
numbers of the experiments described here were of order lo5. 

A single experiment in which a viscous water-glycerol solution was used with 
Re = 2700 and 2 = 2.8 x gave an initial value of F = 0.451 that was not sig- 
nificantly different from that obtained with water, where Re = 8.8 x lo4, C = 3.0 x 
and F was found to be 0.464 f 0.007. However, the increased boundary friction caused 
the cavity speed to decrease appreciably as it progressed along t'he duct, and at  no 
point could the flow beneath the cavity be regarded as uniform. 

6. Conclusions 
It has been demonstrated that the flow associated with the intrusion of an air 

cavity into a long horizontal duct may be steady or unst,eady, depending on how the 
flow leaving the duct is controlled. Only when the water depth beneath the cavity is 
exactly one-half or is greater than about 0.78 of the duct height is steady flow possible. 
Such flows are described adequately by Benjamin (1968), after allowance has been 
made for the effects of surface tension. 

When the water depth behind the cavity is between 0.50 and 0.78 of the duct 
height, the cavity can be divided into two distinct regions of uniform parallel flow 
separated by a bore. The frontal region corresponds to Benjamin's energy-conserving 
flow where the air-water interface is located at  the mid-height of the duct. The frontal 
region terminates at  a bore which travels more slowly than the cavity front and 
causes a lengthening of the frontal region as it progresses along the duct. The bore 
can be undular or breaking, depending on the extent of throttling of the flow as it 
leaves the duct. A second region of uniform parallel flow is observed behind the bore. 

Surface tension combined with the no-slip condition at  the upper boundary can 
markedly affect the shape and celerity of the cavity. This becomes more pronounced 
when the depth of the cavity is small. 

The author would like to  thank Professor Ian Wood for his helpful comments on 
a draft of this paper. 
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